From a grid stability point, you can’t produce more than is used, else you get higher frequencies and/or voltages until the automatics shut down. It’s already a somewhat frequent occurence in germany for the grid operator to shut down big solar plants during peak hours because they produce way more power than they can dump (because of low demand or the infrastructure limiting transfer to somewhere else)
Negative prices are the grid operator encouraging more demand so it can balance out the increased production.
Spot on! I hoped this comment would be higher! The main problem isn’t corps not making money, but grid stability due to unreliability of renewables.
To be fair, the original tweet is kinda shit to begin with. They’ve unnecessarily assigned monetary value to a purely engineering (physics?) problem.
The original commenter’s (OC’s) point has nothing to do with renewables’ reliability.
It is entirely to do with generation vs demand. Grid operators could ask other generators like coal, nuclear, hydro, etc. plants to curtail so inverter-based renewables can export power, but that’s not likely because those producers can’t ramp generation up and down as easily.
Grid stability is a problem when you have overcrowding of generation without enough demand on given feeders. This is moreso an issue with the utilities anyways and how they plan their transmission and substation upgrades.
The issue is those coal, nuclear, hydro plants are what produce power when the sun isn’t out. If you consistently shut them down for solar, they will go out of business and there will be no way to provide electricity when solar doesn’t.
Piggybacking on your grid stability point, another issue I don’t see getting addressed here is ramp rate.
If we install enough solar where 100% of our daytime load is served by solar, that’s great. But what about when the solar starts to drop off later in the day?
A/Cs are still running while the sun is setting, the outside air is still hot. People are also getting home from work, and turning on their A/Cs to cool off the house, flipping on their lights, turning on the oven, etc.
Most grids have their peak power usage after solar has completely dropped off.
The issue then becomes: how can we serve that load? And you could say “just turn on some gas-fired units, at least most of the day was 100% renewable.”
But some gas units take literal hours to turn on. And if you’re 100% renewable during the day, you can’t have those gas units already online.
Grid operators have to leave their gas units online, running as low as they can, while the sun is out. So that when the peak hits, they can ramp up their grid to peak output, without any help from solar.
There are definitely some interesting solutions to this problem, energy storage, load shifting, and energy efficiency, but these are still in development.
People expect the lights to turn on when they flip the switch, and wouldn’t be very happy if that wasn’t the case. Grid operators are unable to provide that currently without dispatchable units.
If we install enough solar where 100% of our daytime load is served by solar, that’s great. But what about when the solar starts to drop off later in the day?
Store the surprus of energy from the solar panels and use that as a buffer with batteries or gravity
But some gas units take literal hours to turn on. And if you’re 100% renewable during the day, you can’t have those gas units already online.
Why not? Just time it and start it hours before, wind energy could help in that too
One solution to what you’re describing is to expand the grid. If your grid stretches half the planet, when the East starts to experience night, the West still experiences day and can ship electricity from renewables to the East to make up for their self curtailment. The same goes for wind where if one location on the planet doesn’t experience wind, odds are another location does and the power can be shuffled around.
Another option is to build out more battery storage such that any clipped energy from solar or wind - that is, the energy that can be generated from your solar or wind resource but that can’t be exported because it would overload your inverters or transformers or exceed your PPA agreement with your utility - is stored and can be exported for 2-4 hours as the sun goes down or wind dies out.
Not a lot of renewables sites are colocated with battery storage, but more and more are.
Well I wasn’t expecting to find THE right answer in the comments already. Kudos!
And to everyone reading through this post: If you have questions, need more explanations or want to learn more about the options that we have to “stabilize” a renewable energy system and make it long term viable, just ask!
What options do we have to stabilize a renewable energy system and make it long term viable?
Well, I set myself up for this, didn’t I… 😅 Actually I was kind of hoping for a more specific question, as I would need to respond with a wall of text - and I would like to avoid that as it is kinda rude to force people to read so much and it makes discussion difficult.
So maybe 3 options:
- Wall of text
- You have a more specific question in mind to rephrase
- I try to summarize my wall of text, but I might not get the point across
Lol yes you walked right into that one… Well let me try to meet you half way with some open-ended questions:
-
What does “stabilize” mean in this context, and are the challenges there different than the challenges with non-renewables like fossil fuels?
-
What are the biggest bottlenecks for stabilizing renewables, and how surmountable are they? For example, I’ve heard lots of talk about how large-scale battery networks(…?) are important to smooth out capacity for swingy energy sources like solar and wind (i.e. you gotta make sure the power doesn’t go out at night!), but the materials for batteries (e.g. extractable lithium?) are scarce… Or similar concerns about photovoltaic cells. Is there any merit to those concerns? Or are the bottlenecks elsewhere? Or is there no bottleneck at all but Big Oil is conspiring to keep us on hydrocarbons?
-
As someone with a technical background this is the stupidest problem with solar that I don’t get… just turn off the panels in groups until generation is closer to demand… how have engineers not figured that out. And if they have why does this still get written about.
Someone is an idiot. Maybe it’s me?
I’m adjacent to this problem, so I have a little context, but am not an expert at all.
To my knowledge, we don’t have granular control over panels. So we can shut off legs of a plant, but that’s a lot of power to be moving all at once.
Instead, prices are set to encourage commercial customers to intake more power incrementally. This has a smoother result on the grid, less chance of destabilizing.
A customer like a data center could wait to perform defragmentation or a backup or something until the price of power hits a cheap or negative number.
Thanks that’s helpful.
But right…?
Solar plants can be reduced to rationalize supply.
To my understanding. The bigger issue is you can’t as effectively do this with other non-renewables like coal/gas… so this not a solar problem but a problem of legacy power plants.
So stupid. The narrative as well.
Yea, more control over the panels will help with the overgeneration issue.
But there’s other issues like ramping supply to meet peak demand and general generation during non-solar hours that still have to be addressed.
Each have interesting proposals on how to solve them, but they haven’t been developed to the point that they’re ready to be put onto the grid at a large scale.
But the thing is, you CAN simply turn them off at the press of a button (or an automated script) so its really a complete non issue. As long as big solar installations control systems are accessible by the grid operators, it should be fine.
If you’re spending billions to build a solar plant that has to turn off all the time during peak hours then you’re wasting your money. That seems like a fundamental issue to me, not a non-issue.
Are there any solar plants that cost a billion dollars each?
Secondly, you want to over build solar, so that you have enough capacity during off peak hours. Grid storage is obviously the better solution, but seems not widely available enough yet.
Yeah yeah down with capitalism rah rah but if the electric company makes no money, how do they afford infrastructure maintenance?
Ok so we nationalize the electric company. Now taxes pay to keep up the electric grid?
I’m down for all of that, by the way. It’s a great solution. But there is absolutely, indisputably, 100% a problem here, and it’s childish to pretend that if evil corporations would stop being so greedy everything would magically fix itself. It’s completely valid to discuss this issue in terms of problems and solutions.
“For years, mankind has yearned to destroy the Sun.” - CM Burns.
In this thread: a bunch of armchair energy scientists who think they’ve solved the energy storage problem all on their own.
Theres tons of ways that people with even a little brains could figure out, the problem is often cost or feasability.
A big burried water tank in my yard could be heated during the day and used to warm the house via underfloor heating at night, could do the reverse with chilled water in the middle of summer plumbed to an air recirculator with a heat exchanger. Its really simple engineering but expensive to implement.
I think an awful lot of people just dont understand the sheer scale of a lot of these problems, not the fundamentals.
It’s always economics.
There’s a joke I’ve heard that says something like anybody can build a bridge that stands, but it takes an engineer to build one that just barely stands (i.e., one where the materials and labor actually cost money).
That also reminds me of my first router - it was my PC. 10x the cost and 1/10 the features of a purpose built router, but I already had the computer and just needed to provide internet to 1 or 2 more via Ethernet.
Likewise, it’s easy to design energy storage concepts of all kinds. It’s a lot more tricky if you want it to be economically viable and see mass adoption.
If only there were some way to take energy made from sunshine and store it in some form for later. Like in a battery. Or as heat. Or in a flywheel. Or just use the energy for something we’d really like to do as cheaply as possible. Like sequester CO2. Or desalinate water. Or run industries that would otherwise use natural gas.
What is this “Battery” you speak of? The only Battery I know of is the Powder Battery on a warship.
This is what gets me. Relative efficiency of stuff is pretty much nullified when the energy used is free. Total power use still matters because it will determine the total size of the array of solar panels to generate the power needed.
But this is near and dear to my heart. I like hydrogen as energy storage. If you burn it, you get water. Natural gas is just CH4, so the output of burning it is 1CO2 + 2H2O. But a lot of natural gas stuff can also use hydrogen with little modification, so we don’t have to upend entire industries to adapt. Machines can be updated to use the new fuel type with little expense and we’re not throwing out entire production lines to replace them with ones based on electricity.
Why hydrogen? Simple, hydrolysis. Using power generated for free from the sun, you can split water into its base components. Hydrogen and oxygen. With some fancy knowledge, you can capture pretty much all of the hydrogen and none of the oxygen, and store it for use.
It’s inefficient compared to some other technologies, in that it takes a lot of power compared to how much hydrogen/oxygen you get, but bluntly, if it’s coming from solar, who cares? Not like we’re paying for the power anyways.
I keep thinking about this in the form of industry. Say a factory uses natural gas in boilers to make something hot. Whatever the material, whatever the reason, that’s what they’re doing. With little modification, the system can be adapted to hydrogen, and the company can build a hydrogen hydrolysis reactor on site using either city water, rain water, lake or river water… Even an underground well. The reactor runs all day and generates hydrogen, stored in a large, high pressure tank, also on site, then pipelines run it to the machines, boilers, whatever, to run the production lines. It’s free to run, and only requires a single capital investment.
Hydrogen, also, can be stored indefinitely and not “lose charge” unlike other, battery-based storage systems (or heat, or flywheels). So hydrogen is ideal for long term energy storage. Fuel cells are still the most efficient way to convert hydrogen to electricity, and yeah, you lose a lot of potential energy in the electrolysis/fuel cell conversions, but the energy input is free in the first place, so who cares?
I’m not saying we should go all in on hydrogen. I’m just saying that it’s worth continuing to develop the technology for it. Batteries, capacitors, storage via heat or flywheels, they all have their place in the energy future. At least until fusion makes them all obsolete (once we find a way to make that self fueling or use materials that are not extremely limited. IMO, we’re making good progress but we’re decades, if not centuries away from something practical, given our currently known planetary resources).
And yes, battery EVs are a good thing. Hydrogen electric vehicles… Let’s just say “too soon”, and leave it at that. Batteries for daily charge/discharge for home use, absolutely. Larger scale heat/flywheel storage, absolutely. But longer term than days to months, hydrogen may be the better option. It’s certainly a good option for industry that currently relies almost exclusively on natural gas.
I agree that H2 can have certain applications as a bridge technology in some industries, but there is a very important parameter missing in your premise.
Even if solar power seems “free” at first glance it really isn’t. It needs infrastructure, e.g. Photovoltaic Panels and lots of it. So just having H2 instead of a battery for an application means, it needs thrice the PV capacity or even more and with it the grid capacity. Now add to that, we aren’t just talking about replacing electricity from fossil fuel plants by PV, but about primary energy as a whole, which makes the endeavor even more massive. Also H2 will not magically become much more energetically efficient in its production, transport, storage and usage, because there are physical limits. (Maybe with bacteria for production) The tech could and should get better concerning longevity of the electrodes for example. Also as the smallest molecule out there, storage will never be completely without losses. And long term storage requires even more energy and/or material.
All this is to say, that efficiency is still paramount to future energy supply, since also the material is limited or just simply because of costs of infrastructure and its implications on the biosphere. Therefore such inefficient energy carriers as H2 or what people call “e-fuels” should be used only where the enormous power and/or energy density is critical. H2 cars should therefore never be a thing. H2 or e-fuel planes, construction machines or tractors on the other hand could be more appropriate uses.
There’s certainly costs involved with solar. Even the act of cleaning the panels is going to increase maintenance costs. More panels to clean, more cost. More space needed for the panels, more cost. It might not be much per panel, but it’s still a cost. The wear of the panels is more cost, they only last so long before they degrade, and replacements are not free, so if the panels degrade without doing a lot of “work” (aka the outcome of having them) vs the cost of installing and maintaining them, was it worth it? These are all economic questions that also need to be considered.
Yes, it’s not free, but it’s the closest thing to “free” power we have. Literally pennies for gigawatt hours of output. If that power isn’t consumed, then it wasn’t useful to produce. Whether that generated power goes into batteries, homes, or hydrogen production, that’s going to be something we have to solve for.
I see a hydrogen reactor + fuel cell “generator” as a secondary storage system to batteries. When production is unusually high, push the power into hydrogen. It’s not nearly as efficient, but it can be stored for much longer without losing any. It can be stored far more densely than what can be accomplished by batteries. If the batteries are full and your PV plant is still pouring out unused watts, rather then let that energy go to waste, pushing it into hydrogen storage is a better option. If you don’t need it for 6 months, a year, two years? No big deal. When production is low and your batteries are almost out, just fire up the fuel cell and recharge from the excess energy you couldn’t put in the batteries. It’s inefficient, yes, but bluntly, it’s better than letting any of the excess production go to waste.
There’s other competing technologies for the same purpose. I see hydrogen as the second stage of storage. It’s not as good as the first stage, but it’s better than turning to fossil fuels to generate power.
I don’t know if that’s the right answer to the problem. I don’t know if it’s even a good idea. All I know is that it is possible. IMO, it’s not a bad idea.
I’ve said it before and I’ll say it again: if I’m saying anything at all here, it’s that we need to keep researching everything. I don’t want anyone to drop research on another technology to dedicate to hydrogen, just as I wouldn’t want anyone to drop hydrogen to research something else. We need to keep looking into this stuff.
There’s no single solution to our energy needs, as of right now. I don’t see one emerging in our lifetimes. The only goal I want to see pursued, if not obtained, is net zero for climate change. Stop the destruction of the environment, especially, but not limited to, our energy needs. Whatever gets us there, whether hydrogen, nuclear, fusion, solid state, flywheel, heat storage, thermoelectric, geothermal, hydroelectric, or whatever… I’m game. I feel like hydrogen still has a lot of discoveries that can be made, and I really don’t want to see it abandoned because of a lack of popularity in the consumer space. It’s there, it’s green, it’s got potential, let’s keep trying to get it to a place where it can be beneficial, just like with everything else in that market segment.
It is not only economic cost though. As I’ve mentioned, materials are also limited (on the same level as: There isn’t enough copper to wire all motors needed to replace all cars today with EVs). And it needs alot of surface area compared to the concentrated power plants of the past, which means an even bigger impact on the biosphere (especially if not done on rooftops in cities but in mountain ranges or fields, etc.). Don’t get me wrong; solar energy, if done right, is the only source that doesn’t interfere with natural cycles and does not increase entropy of the planet (which makes it actually sustainable). Using it inefficiently though, means inefficient use of other resources which are limited. (Not only economic. But on that note: Public infrastructure is always built with costs in mind, because we shouldn’t waste tax money, so we can do a better and more comprehensive job with what we have.)
So if there is a more efficient way to store energy for long periods, then it should take precedence over a very inefficient one. This will get complex since it is very much dependent on the local conditions such as sunshine, water sources and precipitation, landscape, temperatures, grid infrastructure and much more. As an engineer, I would throw in though, that if you need this secondary storage, that is not much cheaper, doesn’t have some very essential advantage, or doesn’t mitigate some specific risk, but is much more inefficient over your primary storage, then the system’s design is… sub-optimal to put it mildly.
For the argument of exploring everything: We simply can’t. More precisely we could, but it would need much more time, money and resources to arrive at the goal. And since climate catastrophe is already upon us, we don’t have that time and need to prioritize. Therefore a technology that has a physical, not human-made, efficiency limit loses priority as a main solution. That doesn’t mean, that H2 should not be looked into (for specific purposes, where it is essential or the reuse of existing infrastructure is the better option), but that we have to prioritize different avenues, with which we can take faster strides towards true carbon neutrality.
P.S. it doesn’t help, that today’s H2 is almost exclusively derived from natural gas.
H2 from natural gas is more efficient, but obviously creates pollution. Because of the relative efficiency and the prevalence of natural gas in society, most companies have gone to natural gas conversion to hydrogen, as it’s easier to implement, not because it’s greener.
To touch on it, when I’m discussing economics, I’m talking about the discipline of economics, not specifically the economy. The money economy is only concerned with the dollars and cents of everything, economics as a discipline, considers all factors, both in and out, and the adverse effects of everything, both financial and sometimes not financial (since nonfinancial effects can affect the future financial viability of a system).
I’ll be clear, storage isn’t the debate on hydrogen being inefficient. Hydrogen storage is more efficient than most other storage systems. The materials are minimal, a pressure tank with the appropriate seals and safeguards, and the tank can output 100% of the hydrogen that goes into it. There’s no concern with cycle life, as the system can cycle infinitely as long as the structure of the container isn’t compromised. The waste produced when a storage vessel is no longer suitable, is essentially metals that can be fully recycled or otherwise reconstituted into other items without any degradation in the quality of those items, with few exceptions.
The discussion is entirely around how hydrogen is created, and how it is converted back to whatever energy format that is desirable, such as electricity. Coming from electricity, electrolysis is about 70-82% efficient, with 1kg of hydrogen, which has a specific energy density of 143 MJ/kg needing about 50-55 kWh of electricity to create. The most inefficient part of the system is conversation back from hydrogen to electricity, where internal combustion style generators are common (basically a slightly modified natural gas generator), but less efficient than fuel cells. Fuel cells generally have 40-60% efficiency.
Batteries on the other hand have much higher efficiency, but never 100%. Since they’re generally not self regulating, systems for battery management are required. Charge controllers and voltage conversion (or inverters) reduce efficiency further, but generally battery systems are considered to be better than 90% efficient. The downside with battery systems is the relatively short life of the battery and the large amount of waste produced, in comparison with something like hydrogen.
Hydrogen can achieve much higher energy density and the container weighs next to nothing when empty, while batteries weigh approximately the same whether charged or not.
My main argument for hydrogen surrounds the fact that we’re pretty close. 80% efficiency in hydrolysis and 60% on fuel cells, with storage being significantly cheaper on materials and significantly better with cycles, with much less to recycle when the system is replaced or otherwise decommissioned. You can pack a lot more energy in the same volume of space using hydrogen compared to batteries because it can be significantly pressurized to several atmospheres.
There are benefits here that batteries simply cannot match. If we can get the fuel cells and electrolysis to a level that’s comparable to batteries with efficiency, then hydrogen would really become the better option.
With over 8.2 billion people on the planet, we certainly can research all of these options at the same time. Only a very small fraction is even doing the work right now. That number can increase a lot, but we choose to pursue what is financially profitable rather than purely looking towards scientific discovery. Capitalism at work.
If companies can’t sell it, they don’t care. So it doesn’t get done. We should do it anyways because there’s potential here.
There’s two problems with your last post which have to do with physics.
- Fuel Cells and the process of hydrolysis have a limit on their efficiency. Just like with ICEs there isn’t much potential there.
- Between Hydrolysis and the Fuel Cell, there are other lossy processes. Usually the tanks contain pressurized H2 and depending on the usecase even liquid H2. Modern automobile cases use 700-800 bars of pressure. That process is again at around 85% efficiency in a good case. Cooling applications further deteriorate the efficiency and need more energy for storage and/or losses during storage. There are other technologies in research right now, like metal hydride storage, where we’ll have to see what exactly they can do (right now we’re at the stage where we are promised an all-purpose hype, but mostly through the media and not the ones doing the work)
I’m not disputing that capitalism has it’s thumb on the scale; as you’ve written, the synergy to use H2 derived from natural gas is one effect, but it doesn’t stop them from advertising it as green. The physical limits though, one cannot argue with. Their effects would mean a lot more infrastructure that is necessary, with it more materials, which are limited too. Even if possible, we have limited construction capacity, which means that it would take us longer to reach the goal, when time is of the essence. Which leads me to the same conclusion, that where the advantages like power density isn’t absolutely necessary or other solutions are not available, use a better solution.
When speaking to the overall system, there are always inefficiencies with all forms due to the conservation of energy laws.
Similar arguments can be made regarding batteries, as resistance in the wires that connect the cells in a pack together waste power as heat. While overall this may be minimal, the physics provide hard limits here. Unless a superconducting material is made commercially viable without needing to be super cooled, these limits will always be nontrivial.
My entire point is, battery tech has reached a high level of development and there is significantly more we’re trying to achieve with the technology (whether solid state or otherwise), meanwhile, I would argue that hydrogen hasn’t even reached the same level of development as battery technology, yet everyone seems to think it’s a dead end.
It’s hard to argue with the energy density per kg of hydrogen as a material. It’s possibly one of the highest specific potentials of existing technology. What we should be doing is trying to create power from that with as few losses as possible. Fuel cell technology was, in my mind, the first real push in that direction, when it didn’t immediately pay off, we gave up. Meanwhile, alkaline and cadmium based batteries were much worse, but we used them, and continued using them for decades before lithium based batteries became more commercially viable.
I see battery research as looking for the last, most efficient type of battery, while hydrogen isn’t even half way through the possible research we could do on it. Forgetting hydrogen, while it’s in the infancy of the research, for batteries that are very nearly as efficient as physics allows for, to me, is doing ourselves a disservice as a society.
I have no idea what further research into hydrogen will yield. Maybe you’re right and it’s going to go nowhere, maybe not. We don’t know unless we keep trying, same with batteries, same with kinetic storage (flywheel/gravity systems), same with thermal storage… There’s just a lot of material science we can experiment with that wasn’t really something that was possible before now.
I still think it’s worthwhile, clearly you disagree. I appreciate the discussion either way.
Have a good day.
This is a real problem for renewables.
You don’t get paid when the sun shines, and you don’t get paid for when it does not.
You had to pay for building the solar panels and maintaining them. Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.
Next step for renewables must be storage that is cheap enough for it to beat having fossil fuel on standby.
Corporate greed aside none sane would like their tax money either to be spent on producing electricity when it’s not needed.
You need to set the corporate greed aside in your own mind, too (not saying you’re greedy, saying you’ve been indoctrinated to only see life in capitalist terms). Stop thinking in “cost” or “profit”, start thinking in “benefit” and “use”. Producing electricity when it isn’t needed is only a problem when someone is looking to make money off of it.
Producing electricity when it isn’t being used is problematic for the grid. So is producing too little.
Producing electricity when it isn’t needed is only a problem when someone is looking to make money off of it.
I never said it should be. There are plenty of ways to regulate electricity production, storage, and even usage, they just aren’t considered “profitable” so are dismissed, overlooked, and or deliberately smeared and destroyed because they threaten those whose profits they would hurt.
of course it’s a furry shitposting about it.
They aren’t wrong though, storage technology is only starting to come to market in significant enough capacity to be beneficial.
And for storage plants to be financially viable energy costs during the day need to be really cheap, so they can raise them at night and make a significant enough profit to break even.
2 giant lakes. 1 uphill from the other, or one underground. When there’s excess energy you pump water uphill. When you need more you let it back down
yeah, good luck with that one though. it tends to be ecologically problematic, and very, very hard to find places good for this. It has happened, but you can’t just build these things as demand desires.
This is why battery based and thermal based energy storage is taking quite the aggressive focus on research and development right now. Batteries are more of a side effect, and very easily accessible, and thermal storage is probably a lot less popular than it should be.
Generally you can do a similar thing with traditional hydro anyway, plus it produces a base level of power anyway.
You’re telling me we can’t dig big holes and use them? What about using old mines and quarries?
Is it a problem that they can’t find anything, or just that it would be a bit expensive and they would rather use batteries as an excuse to keep using oil?
you could, theoretically. You cold also create man made natural lakes in places where it’s convenient, but again, you need the rough shape of a lake high up, and the rough shape of a lake near enough, and lower to the other lake, that you can generate significant amounts of power.
You might be able to use an old quarry, most old quarries are flooded anyway, but idk of many quarries that exist near the base of a mountain with the ability to have a higher elevation storage pond. Most quarries are probably going to be pretty close to ground on account of being a quarry, so that doesn’t really help much. You could also use a mine, but the problem there is going to be getting water out of it trivially. It’s just not really conducive to that use case.
Another big problem is going to be pollution to the water supply, especially in something like a quarry or mine. That’s a non improbable issue.
Ok so TL;DR here, is that you need an incredibly rare formation of geological features, and the ability to use them. If you’ve ever played minecraft you can think of it like finding a 3x3 formation of bedrock on the top layer of bedrock in the overworld. If not you can think of it like staring at a TV displaying static waiting for it to suddenly emerge an image that isn’t just indecipherable noise. Or better yet, the monkey on a type writer example, given enough time, it will produce the entire works of shakespeare.
It’s theoretically possible, but practically, when possible, it’s probably already been done, and if it hasn’t there’s probably a good reason for it.
If you’re analyzing this from a mathematical perspective, the problem here is not finding two lakes, or finding two lakes at different elevation levels, it’s finding two lakes, at different elevation levels, sufficiently close enough to be practically uesful for pumped hydro.
The reason why we’re using batteries right now, as i’ve said is partially two fold, it’s a lot simpler, you can invest the majority of your capital into an energy storage medium, the remainder is for infrastructure, land, buildings, power equipment, which makes it a very low risk investment. The second primary reason is simply accessibility. Chemical batteries are simply the most prevalent, cheapest, and most accessible form of energy storage right now. They work anywhere, they can be built to any scale, they work no matter what time of day it is, or what time of year it is. They literally just work.
If you’re trying to do something like pumped hydro you’re going to need a massive, multi billion, possibly hundreds of billions of dollars of capital, probably close to about a decade of construction, and only then after the construction can you start it up and start to generate power.
With a battery storage system, once it’s built and approved for use, it can immediately start providing power storage. And for the cost of a few million, to a few hundred million. And again it scales basically infinitely.
There are also a few other problems, Digging a big hole and filling it with water while it sounds simple is more challenging than it would seem. You need a geologically suitable area for it, and at this point you’re probably going to be flooding a dammed mountainous area anyway, so it’s probably redundant. There are earth fill embankment dams, however they have issues with subsidence for example, and that tends to be rather spooky. You would experience a similar issue here, the only difference is that it’s below ground, instead of above. What do you do with the removed material? What do you do if you’re in an area with a lot of bedrock? You’ve basically just created a quarry now.
Sounds like quitter talk
shit man you got me, fuck it lets blow up a nuke in a mountain to create a pumped hydro plant.
The “problem” of negative energy costs is easy to solve, but quite costly.
Build water desalination/carbon capture and storage/hydrogen generation plants that only run when the price goes below 0; even though these are very energy intensive, they would help stabilize the grid.
Then build more solar; you want to try to have the daytime price stay in the negative as often as possible.
you want to try to have the daytime price stay in the negative as often as possible.
That’s not exactly conducive towards people building more solar.
The solar isn’t the goal; the energy is enabling the value in other parts of the economy.
In fact; energy supply is so important to the reasonable functioning of the economy. It should be taken out of the profit driven cycle of business.
Look at what happened with WPI in Ohakune and PanPack when energy prices sky rocketed a few months back.
Scientists: Hi here is a physical, technical, materially real limitation of most renewables that most of you should know about by now.
Shitforbrains shitter leftie: must be capitalism
If the technical limitation is “it drives down prices” then it is about capitalism, yes.
How do you even manage to not get that?
Every time someone mentions “oh no solar is producing too much energy” I think of this deranged Forbes article from a few years back.
alt-text
Microsofts billionaire founder Bill Gates is financially backing the development of sun dimming technology that would potentially…{blahblah global cooling}
This is obviously in the context of attempting to mitigate global warming, which was caused by… you guessed it, mostly fossil fuel use.
Nobody is proposing blocking out the sun like Mr. Burns. More like reflecting a tiny percentage of solar radiation to prevent our oceans from boiling or once-in-a-century superstorms that, oh I don’t know, flood the mountains of Tennessee from becoming yearly occurrences.
This sounds like the start of a sci-fi apocalypse novel
Or Highlander 2 lol (don’t watch it, it’s horrible)
Or the Neal Stephenson Novel “Termination Shock” where rogue Billionaires shoot elemental sulfur into the upper atmosphere and it works and nothing bad happens because of it.
Reading the novel I was always waiting for basic chemistry to catch up to them (There are a few reactions going Sulfur + Ozone + UV Light > acid rain/ heat trapping isolation layer/ all sorts of cool stuff) and it was a disappointmet to me this was never discussed. I expected more from Stephenson. This book read more like a hazeography of the trillionaires club.
Literal free goddamn energy from the sky and these greedy fucks are going to burn the world down because they can’t flip it for a buck
you know we could just put our collective foot down and take the power away from them.
It sounds dumb, but because you can’t turn off solar power, if it produces more then you need, you have to use it somehow or it can damage equipment. Hence the driving prices into negative territory. It’s a technical problem more than it is a financial one.
It is a financial problem. Technically you can just cover the solar panels. But that’s not good financially.
Your “technically you can” is actually a huge logistical nightmare to implement.
Having electricity rates go really low is intended to incentivize people or companies to sink the excess energy to wherever they can. And also to discourage producers to produce more at that hour, if they are able to.
Really? I’m seriously asking, because I thought solar farms already had automated ways of cleaning off the panels, surely an automated way to cover the panels wouldn’t be any more complex than that. It would add maintenance costs for sure, but calling it a logistical nightmare seems like an exaggeration.
Most use a horizontal single axis configuration and could just tilt the panels away from the sun.
The real question that we should be asking, is why nobody can think of what to do with free energy?
Desalination? Mine Bitcoin? Giant space laser?
It’s not a question of ideas, it’s a question of money. Building things to use excess power costs a lot of money.
In some markets, the power price actually goes negative and consumers can be paid to use energy.
https://edition.cnn.com/2024/09/20/energy/three-mile-island-microsoft-ai/index.html
I think there’s plenty of money out there to use excess power, someone just has to connect the dots…
Or in a pinch: just run big-ass space heaters. Seriously. It’s a stupid way to burn off excess power, but it’s dirt simple and cheap. Just have a big array of resistive heaters out in an empty field somewhere with a high fence around it. Need to burn off an extra GW? Run it through massive heating elements and burn burn it off. It’s a stupid waste of good energy, but as an emergency backup, it’s not a bad option. It’s trivially easy to dispose of huge amounts of excess electricity if you just run the mother-of-all space heaters. Run your stupid giant resistive heater at the bottom of a lake for even better effect.
It is a technical problem of how can you convince electrical companies to overcome a problem they have no financial incentive to solve.
Sounds like energy companies or independent entities should invest in energy storage so they can get paid to draw from the grid.
But then you’ve got cities like Morro Bay, CA that are trying to stop a plan to replace a coal plant with a battery storage facility because batteries are supposedly dangerous.
Gotta love any time anybody argues against replacing coal with something else, and the tactic is to spread FUD about the thing that is NOT coal!
That’s not at all what MIT is talking about here. This goes into detail around the challenges tied in rolling out grid scale solar in a way that aligns with supply and demand curves, and how to make sure we’re able to capture overproduction so that we can use it when not enough is being produced. It’s a complex shift to work out in our over 100+ year grid production structure, and has been an ongoing discussion across the energy sector. But you know…memes and shit.
You’re not saying anything contradictory to the criticism, You’re saying the exact same shit with a more expensive vocabulary. I’m also very educated. I also agree the sun is Monty Burns greatest enemy for giving out free light.
it’s long past time we took businessman out of control and replaced them with scientists.
In which case they would choose Nuclear over Solar 9/10 times. I’m onboard
The real special bit is that this crap isn’t coming from, say Harvard, who one expects is all about business, but MIT which is supposed to be about Science and Engineering.
The media arm of MIT has been steaming garbage for years and constantly misrepresents the studies from their own researchers for clickbait.
But that aside, even though the engineering work out of MIT is solid, their economic opinions heavily reflect the fact that it’s an institution full of trust fund nepotism.
The grid needs to balance input and output. You can’t just “throw away” power.
It’s a real problem — not the “electric companies are losing money” part, but the “we need to keep the grid balanced” part.
That can indeed be a problem.
It is however not what the MIT guys wrote as being the problem: they quite literally said the problem with too much solar generation at peak times is that it drives prices down.
Also, curiously, the prices being driven down actually helps with the real technical problem that you point out: those consumers who can move their consumption times will tend to move them to those hours when the prices are lowest thus helping solve it. Same thing goes for investors: the more the price is pushed down at peak solar production times, the more appealing it is to invest in things like storage or even solutions with lower efficiency (such as green hydrogen or electricity transportation cables to markets less well served by solar).
The low prices aren’t the problem from a technical point of view, quite the contrary: they’re an incentive to invest in solutions (which is going to employ a lot of techies, so supposedly MIT would be all in favor of it)
So what they are saying is that our current financial system is too focused on short term gains to cope with short term losses?
Sigh, when I grew up, I was allways taught to save money so that I have a buffer to fall back on. This concept seems to have completely gone out the window for busniesses lately.
I dislike the talk about how capitalism is bad as a general concept, but when seeing stuff like this I do agree with it in parts.
Ok, so let’s solve the issue.
There is too much electricity, so generating power to transmit to the network will cost us money.
This has an easy solution, just don’t transmit it to the network.
Build a battery facility where you store the power instead, infact if the price of electricity is negative, use the power on the grid and charge your batteries as well, I mean, when the electricity cost is negative, you are being paid to consume power.
Then when the sun goes down, and the electricity price goes up, you sell the charge you have in the batteries.
Depending on your location you could even set up a pumped storage system, where instead of batteries getting charged, you use the cheap excess energy to pump a resarvoir full of water, and release it when you need the power.
That’s really not an easy solution at all. It’s simple, conceptually, but it’s a huge series of projects. And expensive.
I know that, but with long term planning its fine.