Rep. Matt Gaetz (R-Fla.) introduced a bill Tuesday that would allow Americans to pay their federal income tax in bitcoin. Gaetz said the radical move would “promote innovation, increase efficiency,…
Nobody transacts with it anymore, because it is a StOrE oF vAlUe.
I transact with it daily. Other people do to especially in the developing world, there is constant competition for blockspace, those people aren’t just sending transactions between their own wallets. Its price has little to do with value as a transactional currency. I think you are conflating price with transaction fees, which lightning has solved. You can use a single on-chain transaction ($1.50) to open a lightning channel which can have over a billion transactions in it for less than a penny in fees each. Lightning transactions take under a second. You can use that lightning channel to transact with anybody else on lightning. All while being secured by main chain. It’s powerful stuff and it’s not even the only L2 in existence for Bitcoin.
BTC’s PoW algorithm simply doesn’t scale
It absolutely scales. It has scaled till now and will continue to do so. There are plenty of valid criticisms of PoW, this one isn’t one of them. The energy is used to secure the network, it decides who can update blocks, that is literally the point. You can say that ‘proof of ownership/stake’ are ‘secure enough’ but there is no argument they are more secure. It’s literally “who owns the coins controls the network” and once you get enough coins to 51% attack, you can 51% attack the network forever at no additional cost. It also causes increased centralization of wealth. Proof-of-work requires you to keep pouring money/resources/energy into your attack and when you can’t do that any more, your attack essentially gets rolled back. Energy is the most equitably (but not perfectly equitably) distributed resource on earth.
Nobody in this community cares about opening a tab on Lightning and needing to continually police it to make sure you don’t lose your coins, but let me explain the Power thing a bit more.
Bitcoin’s block confirmation algorithm is based on SHA-256, which is an algorithm that just uses computing capacity to work. Custom ASIC chips have been developed to solve that problem at a very high rate, and current Bitcoin mining farms just use a bunch of these in parallel to go faster and make more hashes. More chips = more power consumed.
But computing power is not the only resource that you can use for Proof-of-work. Other algorithms are designed to use a large amount of memory also, and memory is harder to scale than computing power. Other algorithms enforce that multiple nodes need to work in concert, and the network delays between them also enforce an additional cost. These make it harder to make things go faster simply by spamming more units. These are just as secure as the SHA256 algorithm that BTC uses. But fewer units = less power.
BTC Maxis think the enormous amount of power consumed on the network is a selling point, when in reality it is the only feasable excuse for governments to ban it. Governments can never ban the protocol itself – it’s just math, after all – but can severely restrict where mining can happen if they think it is burning too much power and endangering other parts of the economy.
Nobody in this community cares about opening a tab on Lightning and needing to continually police it to make sure you don’t lose your coins
You don’t have to do this. This is all automated and abstracted away in UX. I’ve never manually looked at any channels. There is also zero incentive for an attacker to do an attack as your describing because prevention of such attacks is automated and they have to put coins at risk to do it. In lightning’s early days what you’re talking about was real and true, but it’s been years since that’s been the case. I dismissed lightning out of hand as well and came back round to it recently and it’s really matured a lot.
Other algorithms are designed to use a large amount of memory also, and memory is harder to scale than computing power.
Ultimately you are replacing one type of scale with another. At the end of the day, it’s hardware, and people will buy the appropriate hardware to mine, and if you can achieve economies of scale you can mine more efficiently all other variables the same. What route they use to turn that energy into BTC is almost immaterial.
Other algorithms enforce that multiple nodes need to work in concert, and the network delays between them also enforce an additional cost.
Until a device is created that can do it without concert, then you’ve ended up at square one except worse because one actor can now gain a significant advantage much more than say the party who gets the new ASICs first. You can “prove work”, you can’t “prove network latency”. Basing anything on network delays will cause clustering and centralization and is a less equitable distribution of mining power than energy can provide.
but can severely restrict where mining can happen if they think it is burning too much power and endangering other parts of the economy.
I’m not sure they want to though. Bitcoin miners are ‘buyers of last resort’, they’re not buying power at peak demand times. They’re not competing with existing electricity buyers. They’re helping grids over-provision renewables and ensuring they’ll have a buyer for any extra power produced during non-peak time and driving down the electric rates for their normal ratepayers since your rate is essentially cost to produce electricity/units of electricity produced and as you scale and bring in more renewables cost per unit goes down. Regulators have taken both pro and anti-mining stances, we’ll see how it shakes out, but regardless, as you say, it’s math and mining will still happen regardless. My money is on the grids which have 100% of produced electricity bought 100% of the time at the most efficient scale possible.
I transact with it daily. Other people do to especially in the developing world, there is constant competition for blockspace, those people aren’t just sending transactions between their own wallets. Its price has little to do with value as a transactional currency. I think you are conflating price with transaction fees, which lightning has solved. You can use a single on-chain transaction ($1.50) to open a lightning channel which can have over a billion transactions in it for less than a penny in fees each. Lightning transactions take under a second. You can use that lightning channel to transact with anybody else on lightning. All while being secured by main chain. It’s powerful stuff and it’s not even the only L2 in existence for Bitcoin.
It absolutely scales. It has scaled till now and will continue to do so. There are plenty of valid criticisms of PoW, this one isn’t one of them. The energy is used to secure the network, it decides who can update blocks, that is literally the point. You can say that ‘proof of ownership/stake’ are ‘secure enough’ but there is no argument they are more secure. It’s literally “who owns the coins controls the network” and once you get enough coins to 51% attack, you can 51% attack the network forever at no additional cost. It also causes increased centralization of wealth. Proof-of-work requires you to keep pouring money/resources/energy into your attack and when you can’t do that any more, your attack essentially gets rolled back. Energy is the most equitably (but not perfectly equitably) distributed resource on earth.
This post triggered my /r/Bitcoin PTSD…
Nobody in this community cares about opening a tab on Lightning and needing to continually police it to make sure you don’t lose your coins, but let me explain the Power thing a bit more.
Bitcoin’s block confirmation algorithm is based on SHA-256, which is an algorithm that just uses computing capacity to work. Custom ASIC chips have been developed to solve that problem at a very high rate, and current Bitcoin mining farms just use a bunch of these in parallel to go faster and make more hashes. More chips = more power consumed.
But computing power is not the only resource that you can use for Proof-of-work. Other algorithms are designed to use a large amount of memory also, and memory is harder to scale than computing power. Other algorithms enforce that multiple nodes need to work in concert, and the network delays between them also enforce an additional cost. These make it harder to make things go faster simply by spamming more units. These are just as secure as the SHA256 algorithm that BTC uses. But fewer units = less power.
BTC Maxis think the enormous amount of power consumed on the network is a selling point, when in reality it is the only feasable excuse for governments to ban it. Governments can never ban the protocol itself – it’s just math, after all – but can severely restrict where mining can happen if they think it is burning too much power and endangering other parts of the economy.
You don’t have to do this. This is all automated and abstracted away in UX. I’ve never manually looked at any channels. There is also zero incentive for an attacker to do an attack as your describing because prevention of such attacks is automated and they have to put coins at risk to do it. In lightning’s early days what you’re talking about was real and true, but it’s been years since that’s been the case. I dismissed lightning out of hand as well and came back round to it recently and it’s really matured a lot.
Ultimately you are replacing one type of scale with another. At the end of the day, it’s hardware, and people will buy the appropriate hardware to mine, and if you can achieve economies of scale you can mine more efficiently all other variables the same. What route they use to turn that energy into BTC is almost immaterial.
Until a device is created that can do it without concert, then you’ve ended up at square one except worse because one actor can now gain a significant advantage much more than say the party who gets the new ASICs first. You can “prove work”, you can’t “prove network latency”. Basing anything on network delays will cause clustering and centralization and is a less equitable distribution of mining power than energy can provide.
I’m not sure they want to though. Bitcoin miners are ‘buyers of last resort’, they’re not buying power at peak demand times. They’re not competing with existing electricity buyers. They’re helping grids over-provision renewables and ensuring they’ll have a buyer for any extra power produced during non-peak time and driving down the electric rates for their normal ratepayers since your rate is essentially cost to produce electricity/units of electricity produced and as you scale and bring in more renewables cost per unit goes down. Regulators have taken both pro and anti-mining stances, we’ll see how it shakes out, but regardless, as you say, it’s math and mining will still happen regardless. My money is on the grids which have 100% of produced electricity bought 100% of the time at the most efficient scale possible.