I do think the upper bound on that page is wrong thought. Incedentally in the article itself only the lower bound is prooven, but in its sources this paper prooves what I did in my comment before as well:
for the upper bound it has max**+log(n)**. (Section 2, eq 4) This lets us construct an example (see reply to your other comment) to disproove the notion about beeing able to calculate the max for many integers.
I just remembered where I learned about that function, in this course on convex optimization that unfortunately I never had the opportunity to finishing it but is really good.
After searching a little, I found the name of the function and it’s proof: https://en.wikipedia.org/wiki/LogSumExp
thanks for looking it up:).
I do think the upper bound on that page is wrong thought. Incedentally in the article itself only the lower bound is prooven, but in its sources this paper prooves what I did in my comment before as well:
for the upper bound it has max**+log(n)**. (Section 2, eq 4) This lets us construct an example (see reply to your other comment) to disproove the notion about beeing able to calculate the max for many integers.
I just remembered where I learned about that function, in this course on convex optimization that unfortunately I never had the opportunity to finishing it but is really good.