One million Blackwell GPUs would suck down an astonishing 1.875 gigawatts of power. For context, a typical nuclear power plant only produces 1 gigawatt of power.

Fossil fuel-burning plants, whether that’s natural gas, coal, or oil, produce even less. There’s no way to ramp up nuclear capacity in the time it will take to supply these millions of chips, so much, if not all, of that extra power demand is going to come from carbon-emitting sources.

  • sunstoned
    link
    fedilink
    English
    arrow-up
    2
    arrow-down
    1
    ·
    edit-2
    5 months ago

    Believe what you will. I’m not an authority on the topic, but as a researcher in an adjacent field I have a pretty good idea. I also self host Ollama and SearXNG (a metasearch engine, to be clear, not a first party search engine) so I have some anecdotal inclinations.

    Training even a teeny tiny LLM or ML model can run a typical gaming desktop at 100% for days. Sending a query to a pretrained model hardly even shows up on HTop unless it’s gigantic. Even the gigantic models only spike the CPU for a few seconds (until the query is complete). SearXNG, again anecdotally, spikes my PC about the same as Mistral in Ollama.

    I would encourage you to look at more explanations like the one below. I’m not just blowing smoke, and I’m not dismissing the very real problem of massive training costs (in money, energy, and water) that you’re pointing out.

    https://www.baeldung.com/cs/chatgpt-large-language-models-power-consumption